The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis.
نویسندگان
چکیده
Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10(-12)) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P < 10(-14)). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.
منابع مشابه
Interleukin-17A and Interleukin-17F mRNA Expressions in Peripheral Blood Mononuclear Cells of Patients with Multiple Sclerosis
Bakground: Multiple sclerosis (MS) is a CD4+ T cell-mediated autoimmune disease affecting the central nervous system (CNS). It was previously believed that Th1 cells were pathogenic T cells in experimental autoimmune encephalomyelitis (EAE). However, the functional role of Th1 cells in EAE has been reconsidered upon the discovery of IL-17- producing T cells which are consider as dominant effect...
متن کاملThe function of epigenetic processes in multiple sclerosis: review article
Multiple Sclerosis (MS) is a chronic neurological and inflammatory disorder that affects the nervous system. The etiology of MS is unknown, but genetic and environmental factors are involved in its pathogenesis. There is increasing evidence suggesting the role of epigenetic mechanisms in the pathogenesis of multiple sclerosis. Lack of vitamin D, smoking, and Epstein barr virus can cause epigene...
متن کاملThe miR-223: An Inflammatory MicroRNA Involved in Pathogenesis of Multiple Sclerosis
Multiple sclerosis (MS) is the most common autoimmune inflammatory demyelinating disease that affects the brain and spinal cord. Dysregulation or mutation of miRNA genes have been linked to the pathogenesis of MS. The miRNAs are short, 20-22 nucleotide long, single-stranded regulatory and non-protein coding RNAs that modulate the expression of multiple target genes. Among miRNAs, miR-223 has be...
متن کاملP 51: The Role of T Helper 17 in Pathogenesis of Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) which causes demyelination of the nerve fibers. The etiology of this disease is not well understood but it is believed that T helpers play a central role in MS. Numerous findings support the view that Th17 cells play an essential role in pathogenesis of MS and IL-17 secreting T (Th17) cells have a role in infla...
متن کاملEffect of Vitamin D treatment on Interleukin-2 and Interleukin-4 Genes expression in Multiple Sclerosis
Introduction: Multiple sclerosis is a chronic inflammatory disease of central nervous system. The etiology of MS is slightly known, but genetic and environmental factors are reported. Vitamin D regulates gene expression and affects target cell functions. The aim of this study was to investigate the expression variation of IL-2 and IL-4 genes under vitamin D supplementation in patients with mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2010